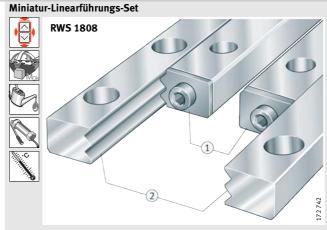


mit Zylinderrollen-Flachkäfigen

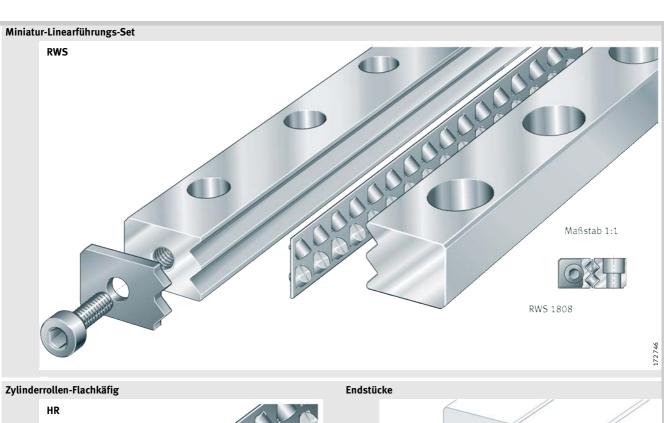

mit Zylinderrollen-Flachkäfigen

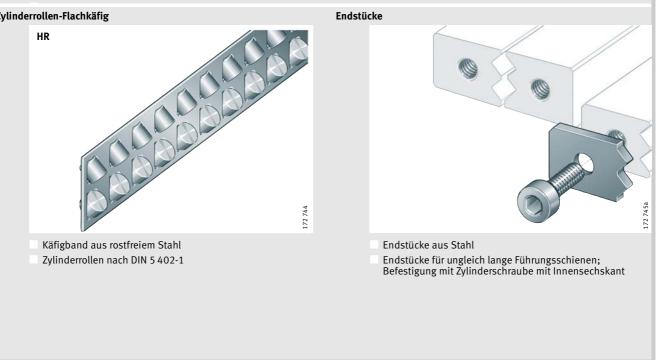
	Si	eite
	Konstruktions- und Sicherheitshinweise	4
HO-4	Genauigkeit	12
+	Zubehör	13
AAAAA	Bestellbeispiel und Bestellbezeichnung	13
	Tabellen	14

Merkmale

Miniatur-Linearführungs-Sets

- sind einbaufertige Festlager für begrenzte Hübe
- haben eine hohe Tragfähigkeit, Steifigkeit und Ablauf-Genauigkeit bei nur minimal notwendigem Bauraum
- werden in vielen Standardlängen und anwendungsspezifischen Längen geliefert und ergeben besonders wirtschaftliche Konstruktionen
- nehmen Kräfte aus allen Richtungen ausgenommen die Bewegungsrichtung – und Momente um alle Achsen auf
- sind tragfähiger und genauer als Umlaufführungen
- haben eine hohe Laufruhe
- sind sehr steif
- sind durch die variable Gestaltung des Führungsabstandes einfach an vorgegebene Anschlusskonstruktionen anpassbar
- haben Wälzkörperanordnungen, die die Kräfte in einem Druckwinkel von 45° übertragen
 - zwei Zylinderrollenreihen stehen in Linienkontakt auf den Laufbahnen
- können durch Umsetzen der Käfige auf O- oder X-Anordnung umgerüstet werden
- haben stirnseitig eine bessere Abdeckung bei ungleich langen Schienen
- können mit Öl oder Fett über die Führungsschiene geschmiert werden
- sind auf Anfrage auch in rostfreier Ausführung lieferbar.




- Grundausführung, bestehend aus:
 - innerem ① und äußerem ② gleich langem oder ungleich langem Schienenpaar
 - Zylinderrollen-Flachkäfigen
 - Endstücken
- geeignet für Temperaturen bis +120 °C

Führungsschienen

- induktivgehärteter Stahl
- feingeschliffene Laufbahnen für die Wälzkörper
- Befestigungsbohrung, wahlweise mit Einsatzmutter ESM kombinierbar
- stirnseitig Bohrungen für Endstücke ausgenommen die längeren Schienen

mit Zylinderrollen-Flachkäfigen

Konstruktions- und Sicherheitshinweise

Tragfähigkeit und Lebensdauer

Die Tragfähigkeit der einzelnen Elemente bestimmt die Größe der Führungseinheit. Die Tragfähigkeit wird durch die dynamischen Tragzahlen C und statischen Tragzahlen C₀ (Maßtabellen) beschrieben.

Bei Anwendungen mit Temperaturen über +120 °C müssen Reduktionsfaktoren der Tragzahl berücksichtigt werden. Bitte rückfragen.

Nominelle Lebensdauer

Die nominelle Lebensdauer wird nach folgenden Beziehungen bestimmt:

$$L \; = \; k_{KHV} \cdot \left(\frac{C}{P}\right)^p$$

$$L_{h} = \frac{8,33 \cdot 10^{5}}{H \cdot n_{osz}} \cdot k_{KHV} \cdot \left(\frac{C}{P}\right)^{p}$$

nominelle Lebensdauer in 100 000 m

k_{KHV} – Kurzhubfaktor nach DIN 636-3 (Bild 1)

dynamische Tragzahl (Maßtabellen)

dynamisch äquivalente Belastung

Lebensdauerexponent = 10/3

nominelle Lebensdauer in Betriebsstunden

mm

Abstand der Hub-Extremlagen

min⁻¹

 ${
m n}_{\rm osz} {
m min}^{-1}$ Anzahl der Doppelhübe je Minute.

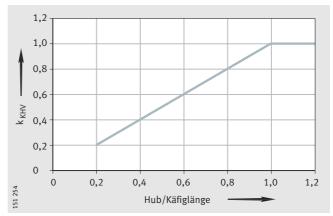


Bild 1 · Kurzhubfaktor k_{KHV} – nach DIN 636-3

Statische Tragsicherheit

Die statische Tragsicherheit S_0 ist die Sicherheit gegenüber bleibender Verformung im Wälzkontakt, die hinsichtlich der Führungsgenauigkeit und Laufruhe als zulässig angesehen wird. Sie kann nach folgender Beziehung ermittelt werden:

$$S_0 = \frac{C_0}{P_0}$$

$$S_0 = \frac{M_0}{M}$$

Werden hohe Anforderungen an Laufgenauigkeit und Laufruhe gestellt, sollte eine statische Tragsicherheit von $S_0 = 3$ nicht unterschritten werden.

Bei hohen Belastungen grundsätzlich Tragfähigkeit der Befestigungsschrauben überprüfen!

Die statisch äquivalente Lagerbelastung ergibt sich aus der maximal auftretenden Last F_{max}.

$$P_0 = F_{max}$$

$$M_0 = M_{max}$$

statische Tragsicherheit

C₀ N statische Tragzahl (*Maßtabellen*)

Nm

maximale statisch äquivalente Belastung

statisches Tragmoment der Lastrichtung (M_{Ox}, M_{Oy}, M_{Oz} nach *Maßtabellen*)

Nm

äquivalentes statisches Moment der Lastrichtung.

Statisches Moment Mox

Die Momente für Wälzkörper in O-Anordnung können nach folgenden Beziehungen ermittelt werden:

$$a_k = a_i + B$$

$$M_0 = k_M + a_k \cdot W_{M_{0x}}$$

a_k mm Abstand der Käfige (Bild 2)

mm

Anschlagbreite innen (Bild 2)

mm

Gesamthöhe der Führung (Bild 2 und Maßtabellen)

 ${
m M}_{
m 0x}$ Nm statisches Moment um die X-Achse (Bild 2)

 k_{M} – Momentenkonstante (Maßtabellen)

 ${\rm W_{M_{0x}}}$ Nm statischer Momentenfaktor um die X-Achse (*Maßtabellen*).

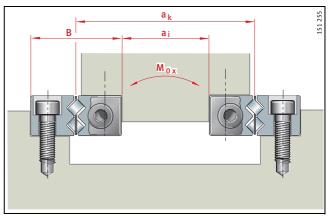


Bild 2 · Anschlagbreite und Käfigabstand

mit Zylinderrollen-Flachkäfigen

Vorspannung

Die Führungen müssen vorgespannt werden (Tabelle 1). Vorspannung:

- erhöht die Steifigkeit und Führungsgenauigkeit
- verringert bei Momentenbelastung (um die Z- und Y-Achse) Höchstlasten auf die Wälzkörper am Käfigende. Dadurch erhöht sich die Momententragfähigkeit des Führungssystems.

Vorspannung beeinflusst auch den Verschiebewiderstand und die Gebrauchsdauer der Käfigführungen!

Table 1 · Vorspannungsklasse

Vorspannungs- klasse	Vorspannung RWS	Anwendung
V1	0,005 · C bis 0,02 · C	kleine bis mittlere Belastung; mittlere bis hohe Steifigkeit; Momentenbelastung

Die Führungsschienen können von der Anschlusskonstruktion oder von den Schienen aus befestigt werden.

Je nach Befestigungsart müssen zum Einstellen der Vorspannung

die Bohrungen/Senkungen in der Anschlusskonstruktion größer als normal sein (Bild 3).

Befestigung der Führungsschienen von der Anschlusskonstruktion aus

Werden zur Befestigung der Führungsschienen die Gewindebohrungen in den Schienen genutzt, so müssen dazu die Durchmesser D₁ und d₁ der Durchgangsbohrungen in der Anschlusskonstruktion größer ausgeführt werden (Bild 3).

Befestigung der Führungsschienen von den Schienen aus

Werden zur Befestigung der Führungsschienen die Durchgangsbohrungen in den Führungsschienen genutzt, können dünnere Schrauben (1) (Bild 4) verwendet werden.

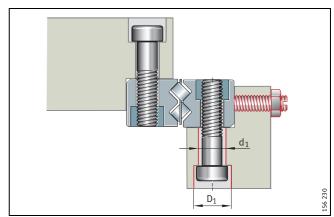


Bild 3 · Befestigung von der Anschlusskonstruktion aus/ Vorspannung einstellen

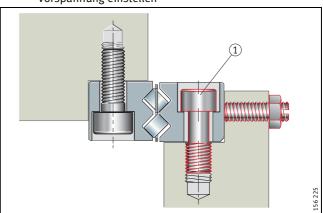


Bild 4 · Spezial-Schrauben/Vorspannung einstellen

Führungsschienen befestigen

Die Führungsschienen haben standardmäßig Befestigungsbohrungen mit Senkung. Dieser Bohrungstyp kann mit Einsatzmuttern ESM kombiniert werden (Bild 5).

Führungsschienen mit der Standard-Befestigungsbohrung werden an die Anschlusskonstruktion geschraubt (Bild 6).

Mit den Einsatzmuttern ESM kann die Standard-Befestigungsbohrung als Gewindebohrung genutzt werden (Bild 7). Montage der Einsatzmuttern siehe Seite 8.

Um Auflagefehler zu vermeiden, Bohrungen in der Anschlusskonstruktion entgraten.

Die Senkungen der Befestigungsbohrungen in den Führungsschienen sind scharfkantig! Verletzungsgefahr! Bei hohen Belastungen grundsätzlich Tragfähigkeit der Befestigungsschrauben überprüfen!

Anschlagseite

Die Seite mit der großen Fase an der Führungsschiene ist die Anschlagseite (Bild 6 und 7).

Bei korrektem Einbau müssen sich die großen Fasen der Führungsschienen diagonal gegenüber liegen!

Die Fase am Endstück und die Fase an der Führungsschiene müssen in ihrer Position übereinstimmen.

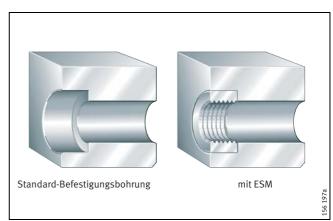


Bild 5 · Bohrungstypen für Führungsschienen

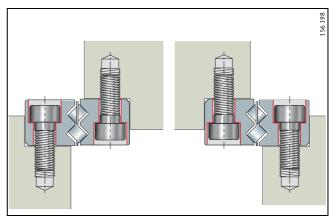


Bild 6 · Führungsschienen befestigen

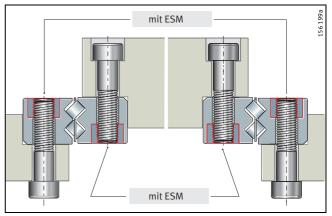


Bild 7 · Führungsschienen befestigen, mit ESM

Einsatzmuttern ESM

Einsatzmuttern ESM sind Zubehörteile zur Befestigung der Führungsschienen (*Zubehör*, Seite 13). Mit den Muttern kann dieser Bohrungstyp als Gewindebohrung genutzt werden. Die Muttern müssen separat bestellt werden und sind der Lieferung lose beigepackt.

Muttern in die Senkungen der Bohrungen für die Befestigungsschrauben einkleben!

Einsatzmuttern ESM montieren

Senkungen in der Führungsschiene und Einsatzmuttern ESM mit handelsüblichen Reinigungsmitteln entfetten (Bild 8, 1).

Gesetzliche Vorschriften für den Umgang mit Reinigungsmitteln einhalten (Vorschriften des Herstellers, der Arbeitssicherheit, des Umweltschutzes usw.)!

Verbrauchte Reinigungsmittel sachgemäß entsorgen!

- Senkungen und Einsatzmuttern trocknen (Bild 8, ②).
- Klebstoff (Tabelle 2) auf die Mantel- und eine Planfläche der Muttern auftragen – Angaben des Herstellers beachten (Bild 9, 3).
- Muttern in die Senkungen einsetzen (Bild 9, 4).
- Muttern zum Aushärten des Klebstoffs mit Gewicht belasten oder mit einer Schraube auf den Boden der Senkung ziehen (Bild 10) – Aushärtezeit siehe Tabelle 2.

Table 2 · Montagekleber für Einsatzmuttern ESM¹)

Montagekleber – Beispiel	Aushärtezeit
Locite 0641 Fügeteile	30 Min. bis 60 Min.
Locite 0242 Schraubensicherung	30 Min. bis 60 Min.
Locite Cyanacrylat-Kleber	30 Sek. bis 50 Sek.

¹⁾ Montagekleber für Fügeteile oder Schraubensicherung mit einem Spaltfüllvermögen von mindestens 0,2 mm.

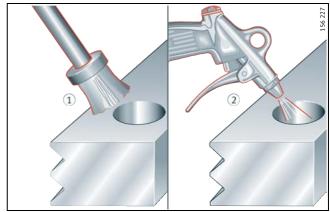


Bild 8 · Mutter/Senkung entfetten und trocknen

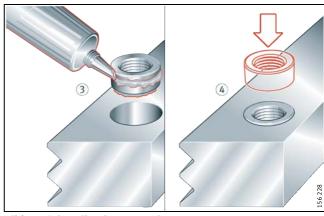


Bild 9 · Klebstoff auftragen und Muttern einsetzen

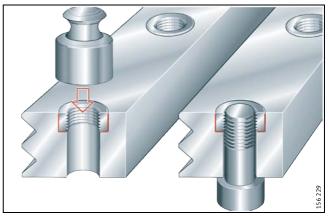


Bild 10 · Klebstoff aushärten

Bohrbilder

Das Bohrbild ist symmetrisch. Dabei ist $a_L = a_R$ (Bild 11). Bei Führungsschienen mit symmetrischem Bohrbild gilt:

$$a_L = a_R = \frac{1}{2} (L - n \cdot j_L)$$

Länge der Schiene

maximale Anzahl möglicher Teilungen

mm

j_L mm Bohrungsabstand (*Maßtabellen*).

O- und X-Anordnung der Wälzkörper

Durch Umsetzen der Käfige können die Wälzkörper auf O- oder X-Anordnung umgerüstet werden (Bild 12).

Lieferausführung/Inbetriebnahme

Miniatur-Linearführungen werden konserviert geliefert. Die Konservierung ist mit Ölen und Fetten verträglich.

Laufbahnen und Käfige:

- abhängig vom Schmierverfahren vor der Inbetriebnahme ölen oder fetten
- gegen feste und flüssige Verunreinigungen schützen.

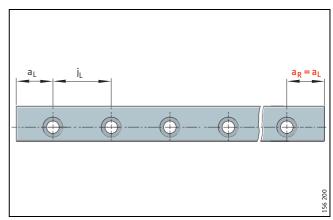


Bild 11 · Symmetrisches Bohrbild

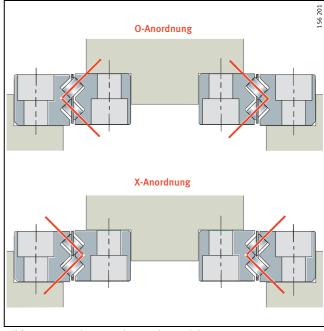


Bild 12 · O- und X-Anordnung der Wälzkörper

mit Zylinderrollen-Flachkäfigen

Gestaltung der Lagerung

Die Gestaltung der Lagerung mit Miniatur-Linearführungen wird im wesentlichen bestimmt von den Anforderungen an ihre:

- Genauigkeit
- Steifigkeit
- Belastbarkeit.

Das wirkt sich direkt auf die Anschlusskonstruktion aus und betrifft vor allem:

- die Form- und Lagegenauigkeit der Anschlussflächen
- die Befestigung der Führungselemente
- die Abdeckung der Lagerung.

Auf ausreichende Festigkeit der Anschlusskonstruktion achten - VDI-Richtlinie 2 230!

Endstücke nicht als Hubbegrenzung verwenden! Das Führungssystem kann beschädigt werden!

Form- und Lagegenauigkeit der Anschlussflächen

Je genauer und leichtgängiger die Führung sein soll, desto mehr muss die Form- und Lagegenauigkeit beachtet werden.

Toleranzen der Auflage- und Anschlagflächen nach Bild 13, Bild 14 und Tabelle 4 einhalten:

Flächen schleifen oder feinfräsen. Mittenrauwert $\leq R_a 1,6$ anstreben.

Abweichungen davon:

- verschlechtern die Gesamtgenauigkeit der Führung
- verändern die Vorspannung
- reduzieren die Gebrauchsdauer der Führung!

Für ΔH (Bild 13) sind Werte nach folgender Gleichung zulässig. Ist die Abweichung größer, bitte rückfragen.

$$\Delta H = a \cdot b$$

$$\Delta H \qquad \mu m$$
 höchste zulässige Abweichung von der theoretisch genauen Lage
$$a \qquad -$$
 Faktor, abhängig von der Baugröße (Tabelle 3) Führung spielfrei eingestellt
$$b \qquad mm$$
 Mittenabstände der Führungselemente.

Table 3 · Faktor, abhängig von der Baugröße

Miniatur-Linearführung	Faktor
Kurzzeichen	a
RWS 1808	0,08

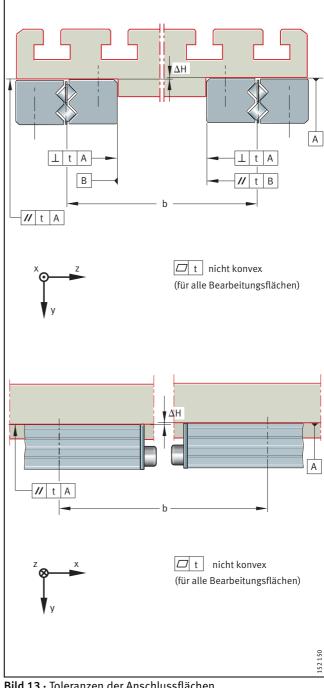


Bild 13 · Toleranzen der Anschlussflächen

Parallelität der montierten Führungsschienen

Parallelität t der Führungsschienen nach Bild 14 und Tabelle 4 ausführen:

- werden die Höchstwerte genutzt, kann der Verschiebewiderstand steigen
- für größere Toleranzen bitte rückfragen.
- \blacksquare Berechnung ΔH siehe Seite 10.

Table 4 · Wert für t

Miniatur-Linearführung	Führungsschiene	Parallelität
Kurzzeichen	Kurzzeichen	t ¹⁾ μm
RWS 1808	RW	5

¹⁾ Wert für spielfrei eingestellte Führung.

Anschlaghöhen und Eckenradien

Anschlaghöhen und Eckenradien nach Bild 15 und Tabelle 5 gestalten.

Table 5 · Anschlaghöhen und Eckenradien

Miniatur-Linearführung	Anschlag	höhen und	d Eckenrad	lien
Kurzzeichen	h ₁	h ₂ max.	r ₁ max.	r ₂ max.
RWS 1808	7,5	7,5	0,4	0,4

Abdichtung

Um die Führungen vor Beschädigungen zu schützen, Laufbahnen ständig sauber halten. Wenn die serienmäßigen Endstücke als Abdeckung nicht ausreichen, zusätzliche Abdichtungen in der Anschlusskonstruktion vorsehen.

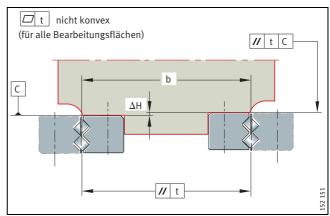


Bild 14 · Parallelität der montierten Führungsschienen

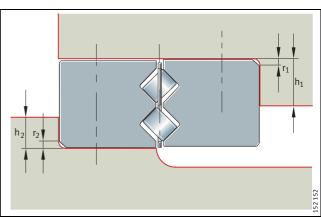


Bild 15 · Anschlaghöhen und Eckenradien

mit Zylinderrollen-Flachkäfigen

Genauigkeit

Lieferbare Genauigkeitsklassen siehe Bild 16 und Tabelle 6.

Table 6 · Genauigkeitsklassen

Miniatur-Linearführung Kurzzeichen	Genauigkeitsklasse
RWS 1808	G1

Parallelität der Laufbahnen zu den Anschlagflächen

Parallelitätstoleranzen der Führungsschienen siehe Bild 16.

Toleranzen der Bezugsmaße für die Anschlagflächen

Die Toleranzen sind arithmetische Mittelwerte (Bild 17 und Tabelle 7). Sie beziehen sich auf den Mittelpunkt der Anschraubbzw. Anschlagflächen an den Führungsschienen.

Die Maße H und B bleiben immer innerhalb der Toleranz, unabhängig davon, an welcher Stelle die Schienen stehen.

Table 7 · Genauigkeitsklasse und Toleranzen

Toleranz		Genauigkeitsklasse		
		G1 μm		
für die Höhe	Н	±10		
für den Abstand	В	0 bis -200		

Längentoleranz der Führungsschiene

Toleranzen siehe Bild 17 und Tabelle 8.

Table 8 · Längentoleranzen

Miniatur-Linearführung	Toleranzen Führungsschiene
Kurzzeichen	L ≦350 mm
RWS 1808	±0,6 mm

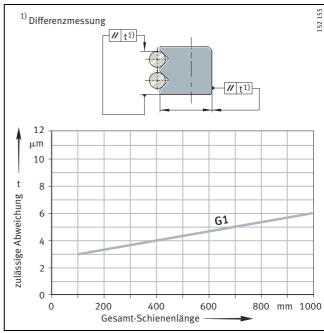


Bild 16 · Parallelitätstoleranzen der Führungsschienen

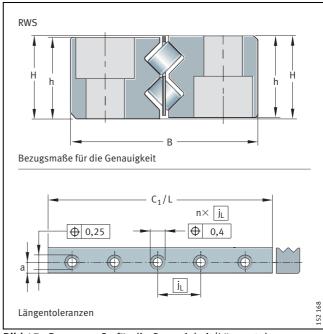


Bild 17 · Bezugsmaße für die Genauigkeit/Längentoleranzen

Getrennt bestellen:

- Einsatzmuttern ESM
 - Nachsetzzeichen +ESM.

Bestellbeispiel und Bestellbezeichnung

Ungleiche Länge der Führungsschienen

Miniatur-Linearführungs-Set
mit Zylinderrollen-Flachkäfig RWS
Größenkennziffer 1808

Länge des inneren Führungsschienenpaares ① 150 mm

Länge des äußeren Führungsschienenpaares ② 175 mm

Hub 20

Bestellbezeichnung:

1×RWS 1808 150/17520 (Bild 18).

Gleiche Länge der Führungsschienen

Miniatur-Linearführungs-Set
mit Zylinderrollen-Flachkäfig RWS
Größenkennziffer 1808

Länge des inneren Führungsschienenpaares 1 150 mm
Länge des äußeren Führungsschienenpaares 2 150 mm
mit ESM

Hub 20

Bestellbezeichnung:

 $1 \times RWS 1808 150/150 + ESM \times 20$ (Bild 19).

Bestellbeispiel Einsatzmuttern ESM

100 × ESM für RWS 1808.

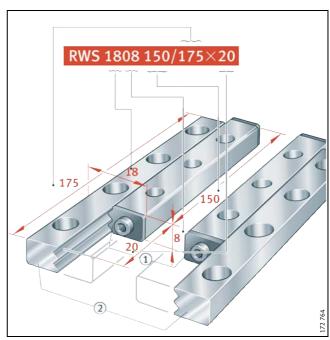


Bild 18 · Bestellbeispiel, Bestellbezeichnung – ungleiche Länge der Führungsschienen

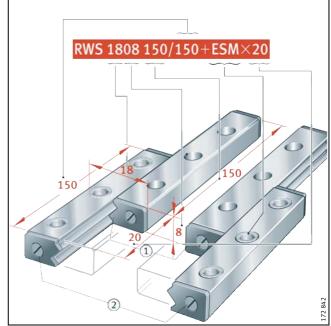
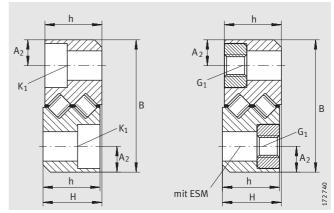



Bild 19 · Bestellbeispiel, Bestellbezeichnung – gleiche Länge der Führungsschienen

mit Zylinderrollen-Flachkäfigen gleiche und ungleiche Länge der Führungsschienen

Series RWS 1808

RWS 1808

Maßtabelle · Al	omessungen in mm	l										
Einheit	Führungspaar 1 bzw. 2	Abmessungen			Anschlussmaße					K ₁ , G ₁		
Kurzzeichen	Kurzzeichen	L _{max} ¹⁾	Н	В	A ₂	h	jι	a _L	a _R	C ₈	für Schraube DIN 912-12.9	Anzieh- drehmoment max. Nm
RWS 1808	RWT	350	8	18	3,5	7,9	25	12,5	12,5	3	M3	2,2

¹⁾ Maximale Fertigungslänge der Schiene. Sonderlängen auf Anfrage.

Beispiel für RWS 1808:

C₁ Länge des inneren Schienenpaares = 125 mm gewünschter Hub = 20 mm h Hub = 22 mm

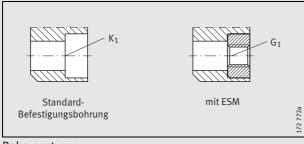
z Sicherheitsbereich = $10 \text{ mm} (4 \le z \le 10)$

L Länge des äußeren Schienenpaares (siehe Gleichung und Tabelle Hauptabmessungen, Tragzahlen, Momente).

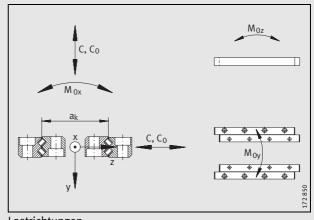
$$L = C_1 + h + z$$

L = 125 mm +22 mm +10 mm = 157 mm

(nächste Standardlänge aus Tabelle *Hauptabmessungen, Tragzahlen, Momente*: L = 175 mm).

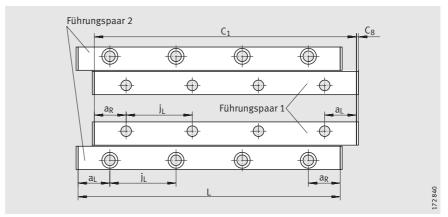

Bestellangabe bei gleich langen Schienen ($C_1 = L$):

RWS 1808 125/125×22


Bestellangabe bei ungleich langen Schienen ($C_1 \neq L$):

RWS 1808 125/175×22


Der Käfig darf nicht länger als die kurze Schiene sein!

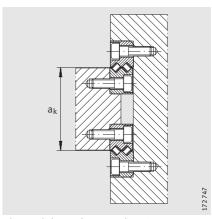

Bohrungstypen

Lastrichtungen (Tabelle *Hauptabmessungen, Tragzahlen, Momente*)

Abstand der Käfige a_k – bestimmt durch die Anschlusskonstruktion

RWS 1808 – gleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set) $^{2)}$

inheit	Hub	Abmessu	ıngen	Tragzahle	n	Momente		
Kurzzeichen	h	C ₁	L ²⁾	dyn. C	stat.	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	40		1	5100	9400	10 +a _k × 4,5	60	60
	32			5600	10500	10 +a _k × 5	60	60
	26			6100	11700	10 +a _k × 5,5	73	73
	18	50	50	6500	12900	10 +a _{k×} 6	88	88
	12			7000	14100	10 +a _k × 7	104	104
	4			7500	15200	10 + $a_k \times 7,5$	121	121
	62			7000	14100	10 +a _k × 7	104	104
	54			7500	15200	$10 + a_k \times 7,5$	121	121
	48			7900	16400	10 +a _k × 8	139	139
	40			8300	17600	10 +a _k × 8,5	159	159
	34	75	75	8800	18700	15 +a _k × 9	180	180
	26			9200	19900	15 +a _k × 9,5	203	203
	20			9600	21100	15 +a _k ×10,5	227	227
	12			10000	22300	20 +a _k ×11	252	252
	6			10400	23400	20 +a _k ×11,5	279	279
	84			8800	18700	15 +a _k × 9	180	180
	76			9200	19900	15 +a _k × 9,5	203	203
	70			9600	21100	15 +a _k ×10,5	227	227
	62			10000	22300	20 +a _k ×11	252	252
	56			10400	23400	20 +a _k ×11,5	279	279
	48	100	100	10800	24600	20 +a _k ×12	306	306
	42	100	100	11200	26000	20 +a _k ×12,5	336	336
	34			11600	27000	20 +a _k ×14	366	366
	28			12000	28000	25 +a _k ×14	398	398
	20			12400	29500	25 +a _k ×14,5	431	431
	14			12800	30500	25 +a _k ×15	465	465
	6		<u> </u>	13200	31500	25 +a _k ×15,5	501	501
	112			10000	22300	20 +a _k ×11	252	252
	106			10400	23400	20 +a _k ×11,5	279	279
	98			10800	24600	20 +a _k ×12	306	306
	92	125	125	11200	26000	20 +a _k ×12,5	336	336
	84			11600	27000	20 +a _k ×14	366	366
	78			12000	28000	25 +a _k ×14	398	398
	70			12400	29500	25 +a _k ×14,5	431	431

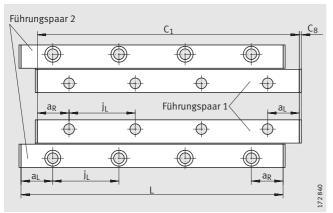

Führungsschie	ne
Führungsschier	ne
Kurzzeichen	Ge- wicht
	≈g
RWT	44
	44
	44
	44
	44
	44
	68
	68
	68
	68
	68
	68
	68
	68
	68
	90
	90
	90
	90
	90
	90
	90
	90
	90
	90
	90
	90
	114
	114
	114
	114
	114
	114
	114

¹⁾ Weitere Abmessungen siehe Seite 14.

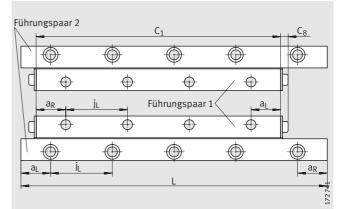
 $^{^{2)}}$ Ist L \neq C₁ siehe Berechnung Seite 14, Bild Seite 17.

mit Zylinderrollen-Flachkäfigen gleiche und ungleiche Länge der Führungsschienen

Series RWS 1808


Abstand der Käfige a_k – bestimmt durch die Anschlusskonstruktion

Einheit	Hub	Abmes	sungen	Tragzahle	n	Momente		
Kurzzeichen	h	C ₁	L	dyn.	stat.	$M_{0x} = k_{M} + a_{i} \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	64			12800	30500	25 +a _k ×15	465	465
	56			13200	31500	$25 + a_k \times 15,5$	501	501
	50			13500	33000	25 +a _k ×16	538	538
	42			13900	34000	$25 + a_k \times 16,5$	577	577
	36	125	125	14300	35000	25 +a _k ×17	616	616
	28			14600	36500	30 +a _k ×18	657	657
	22			15000	37500	$30 + a_k \times 18,5$	700	700
	14			15400	38500	30 +a _k ×19	743	743
	8			15700	40000	30 +a _k ×19,5	788	788
	134			11600	27000	20 +a _k ×14	366	366
	128			12000	28000	25 +a _k ×14	398	398
	120			12400	29500	25 +a _k ×14,5	431	431
	114			12800	30500	25 +a _k ×15	465	465
	106			13200	31500	25 +a _k ×15,5	501	501
	100			13500	33000	25 +a _k ×16	538	538
	92			13900	34000	25 +a _k ×16,5	577	577
	86			14300	35000	25 +a _k ×17	616	616
	78			14600	36500	30 +a _k ×18	657	657
	72	150	150	15000	37500	$30 + a_k \times 18,5$	700	700
	64	150	150	15400	38500	$30 + a_k \times \times 19$	743	743
	58			15700	40000	$30 + a_k \times 19,5$	788	788
	50			16100	41000	30 +a _k ×20	835	835
	44			16500	42000	30 +a _k ×21	882	882
	36			16800	43500	$35 + a_k \times 21,5$	931	931
	30			17200	44500	35 +a _k ×21,5	982	982
	22			17500	45500	35 +a _k ×22	1030	1030
	16			17900	47000	35 +a _k ×23	1080	1080
	8			18200	48000	35 +a _k ×24	1140	1140
	2			18600	49000	35 +a _k ×24,5	1190	1190
	156			13200	31500	25 +a _k ×15,5	501	501
	150			13500	33000	25 +a _k ×16	538	538
	142	175	175	13900	34000	25 +a _k ×16,5	577	577
	136			14300	35000	25 +aa _k ×17	616	616
	128			14600	36500	$30 + a_k \times 18$	657	657


Führungsschi	ene
Führungsschie	ne
Kurzzeichen	Ge- wicht
	≈g
RWT	114
	114
	114
	114
	114
	114
	114
	114
	114
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	136
	160
	160
	160

160

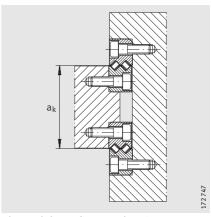
¹⁾ Weitere Abmessungen siehe Seite 14.

RWS 1808 – gleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)

RWS 1808 – ungleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)

Einheit	Hub	Abmess	ungen	Tragzahle	en	Momente		
Kurzzeichen	h	C ₁	L	dyn. C	stat. C ₀	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	122			15000	37500	$30 + a_k \times 18,5$	700	700
	114			15400	38500	30 +a _k ×19	743	743
	108			15700	40000	30 +a _k ×19,5	788	788
	100			16100	41000	30 +a _k ×20	835	835
	94			16500	42000	30 +a _k ×21	882	882
	86			16800	43500	35 +a _k ×21,5	931	931
	80			17200	44500	35 +a _k ×21,5	982	982
	72			17500	45500	35 +a _k ×22	1030	1030
	66	175	175	17900	47000	35 +a _k ×23	1080	1080
	58	1/3	1/5	18200	48000	35 +a _k ×24	1140	1140
	52			18600	49000	35 +a _k ×24,5	1190	1190
	44			18900	50500	35 +a _k ×25	1250	1250
	38			19200	51500	35 +a _k ×25,5	1310	1310
	30			19600	52500	40 +a _k ×26	1370	1370
	24			19900	54000	40 +a _k ×26,5	1430	1430
	16			20200	55000	40 +a _k ×27,5	1490	1490
	10			20600	56000	40 +a _k ×28	1550	1550
	2			20900	57500	40 + a_k ×28,5	1620	1620
	186			14300	35000	25 +a _k ×17	616	616
	178			14600	36500	30 +a _k ×18	657	657
	172			15000	37500	$30 + a_k \times 18,5$	700	700
	164			15400	38500	30 +a _k ×19	743	743
	158			15700	40000	30 +a _k ×19,5	788	788
	150			16100	41000	30 +a _k ×20	835	835
	144			16500	42000	30 +a _k ×21	882	882
	136	200	200	16800	43500	$35 + a_k \times 21,5$	931	931
	130	200	200	17200	44500	$35 + a_k \times 21,5$	982	982
	122			17500	45500	35 +a _k ×22	1030	1030
	116			17900	47000	35 +a _k ×23	1080	1080
	108			18200	48000	35 +a _k ×24	1140	1140
	102			18600	49000	$35 + a_k \times 24,5$	1190	1190
	94			18900	50500	35 +a _k ×25	1250	1250
	88			19200	51500	$35 + a_k \times 25,5$	1310	1310
	80			19600	52500	40 +a _k ×26	1370	1370

Führungsschiene							
Führungsschien	e						
Kurzzeichen	Ge- wicht						
	≈g						
RWT	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	160						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						
	182						

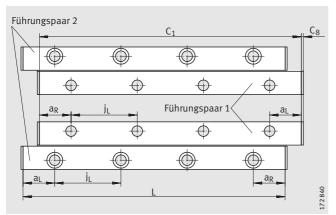

Beispiel zur Auswahl der Sets siehe Seite 14.

182 182

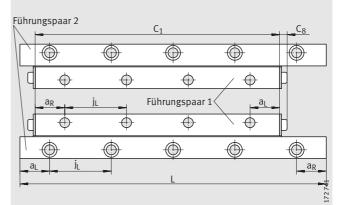
¹⁾ Weitere Abmessungen siehe Seite 14.

mit Zylinderrollen-Flachkäfigen gleiche und ungleiche Länge der Führungsschienen

Series RWS 1808


Abstand der Käfige a_k – bestimmt durch die Anschlusskonstruktion

inheit	Hub	Abmessungen		Tragzahle	n	Momente		
Kurzzeichen	h	C ₁	L	dyn.	stat.	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	74			19900	54000	$40 + a_k \times 26,5$	1430	1430
	66			20 200	55000	$40 + a_k \times 27,5$	1490	1490
	60			20600	56000	40 +a _k ×28	1550	1550
	52			20900	57500	40 +a _k ×28,5	1620	1620
	46			21200	58500	40 +a _k ×29	1680	1680
	38	200	200	21600	60000	40 +a _k ×29,5	1750	1750
	32			21900	61000	45 +a _k ×30,5	1820	1820
	24			22 200	62000	45 +a _k ×31	1890	1890
	18			22600	63500	45 +a _k ×31,5	1960	1960
	10	1		22900	64500	45 +a _k ×32	2030	2030
	4	7		23 200	65500	45 +a _k ×32,5	2110	2110
	208			15700	40000	$30 + a_k \times 19,5$	788	788
	200			16100	41000	30 +a _k ×20	835	835
	194			16500	42000	30 +a _k ××21	882	882
	186			16800	43500	$35 + a_k \times \times 21,5$	931	931
	180			17 200	44500	35 +a _k ×21,5	982	982
	172			17500	45500	35 +a _k ×22	1030	1030
	166			17900	47000	35 +a _k ×23	1080	1080
	158			18 200	48000	35 +a _k ×24	1140	1140
	152			18600	49000	35 +a _k ×24,5	1190	1190
	144			18900	50500	35 +a _k ×25	1250	1250
	138			19200	51500	35 +a _k ×25,5	1310	1310
	130	225	225	19600	52500	40 +a _k ×26	1370	1370
	124			19900	54000	40 +a _k ×26,5	1430	1430
	116			20 20 0	55000	40 +a _k ×27,5	1490	1490
	110			20600	56000	40 +a _k ×28	1550	1550
	102			20900	57500	40 +a _k ×28,5	1620	1620
	96			21 200	58500	40 +a _k ×29	1680	1680
	88			21600	60000	$40 + a_k \times 29,5$	1750	1750
	82			21900	61000	45 + $a_k \times 30,5$	1820	1820
	74			22 200	62000	45 +a _k ×31	1890	1890
	68			22600	63500	45 +a _k ×31,5	1960	1960
	60			22900	64500	45 +a _k ×32	2030	2030


Führungsschi	ene
ührungsschie	ne
Kurzzeichen	Ge- wicht
	≈g
WT	182
	182
	182
	182
	182
	182
	182
	182
	182
	182
	182
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206
	206

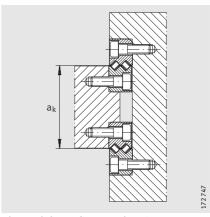
206

¹⁾ Weitere Abmessungen siehe Seite 14.

RWS 1808 – gleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)

RWS 1808 – ungleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)

Einheit	Hub	Abmess	sungen	Tragzahle	n	Momente	Momente		
Kurzzeichen	h	C ₁	L	dyn. C	stat.	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}	
	mm	mm	mm	N	N	Nm	Nm	Nm	
RWS 1808	46			23 500	67000	45 +a _k ×33	2180	2180	
	40			23800	68000	50 +a _k ×34	2260	2260	
	32			24200	69000	50 +a _k ×34,5	2340	2340	
	26	225	225	24500	70500	50 +a _k ×35	2420	2420	
	18			24800	71 500	$50 + a_k \times 35,5$	2500	2500	
	12			25 000	72500	50 +a _k ×36	2580	2580	
	4			25 500	74000	50 +a _k ×37	2660	2660	
	236			16800	43 500	35 +a _k ×21,5	931	931	
	230			17 200	44500	$35 + a_k \times 21,5$	982	982	
	222			17500	45 500	35 +a _k ×22	1030	1030	
	216			17900	47000	35 +a _k ×23	1080	1080	
	208			18200	48000	35 +a _k ×24	1140	1140	
	202			18600	49000	$35 + a_k \times 24,5$	1190	1190	
	194			18900	50500	35 +a _k ×25	1250	1250	
	188			19200	51500	35 +a _k ×25,5	1310	1310	
	180			19600	52500	40 +a _k ×26	1370	1370	
	174			19900	54000	$40 + a_k \times 26,5$	1430	1430	
	166			20 200	55000	$40 + a_k \times 27,5$	1490	1490	
	160			20600	56000	40 +a _k ×28	1550	1550	
	152			20900	57500	40 +a _k ×28,5	1620	1620	
	146	250	250	21 200	58500	40 +a _k ×29	1680	1680	
	138			21600	60000	40 +a _k ×29,5	1750	1750	
	132			21900	61 000	$45 + a_k \times 30,5$	1820	1820	
	124			22200	62000	45 +a _k ×31	1890	1890	
	118			22600	63 500	45 +a _k ×31,5	1960	1960	
	110			22900	64500	45 +a _k ×32	2030	2030	
	104			23 200	65 500	$45 + a_k \times 32,5$	2110	2110	
	96			23 500	67000	45 +a _k ×33	2180	2180	
	90			23800	68000	50 +a _k ×34	2260	2260	
	82			24 200	69000	50 +a _k ×34,5	2340	2340	
	76			24500	70500	50 +a _k ×35	2420	2420	
	68			24800	71 500	$50 + a_k \times 35,5$	2500	2500	
	62			25 000	72500	50 +a _k ×36	2580	2580	
	54			25 500	74000	50 +a _k ×37	2660	2660	

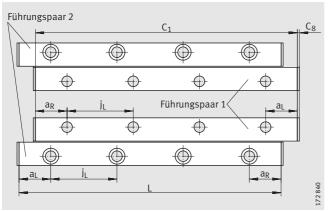

rumungsschiene							
Führungsschiene)						
Kurzzeichen	Ge- wicht						
	≈g						
RWT	206						
	206						
	206						
	206						
	206						
	206						
	206						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						
	228						

Führungsschiene

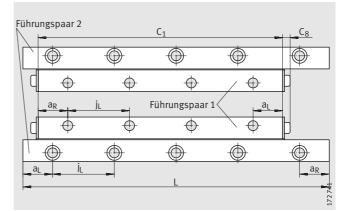
¹⁾ Weitere Abmessungen siehe Seite 14.

mit Zylinderrollen-Flachkäfigen gleiche und ungleiche Länge der Führungsschienen

Series RWS 1808



Abstand der Käfige a_k – bestimmt durch die Anschlusskonstruktion

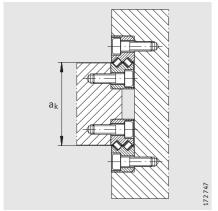

inheit	Hub	Abmess	ungen	Tragzahle	n	Momente		
Kurzzeichen	h	C ₁	L	dyn. C	stat. C ₀	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	48			25 500	75000	$50 + a_k \times 37,5$	2750	2750
	40			26000	76000	50 +a _k ×38	2840	2840
	34			26500	77500	$50 + a_k \times 38,5$	2920	2920
	26	250	250	26500	78500	55 +a _k ×39	3010	3010
	20			27000	79500	55 +a _k ×40	3100	3100
	12			27500	81000	$55 + a_k \times 40,5$	3190	3190
	6			27500	82000	55 +a _k ×41	3 280	3280
	280	_		19600	52500	40 +a _k ×26	1370	1370
	274			19900	54000	40 +a _k ×26,5	1430	1430
	266			20200	55000	40 +a _k ×27,5	1490	1490
	260			20600	56000	40 +a _k ×28	1550	1550
	252			20900	57500	40 +a _k ×28,5	1620	1620
	246			21 200	58500	40 +a _k ×29	1680	1680
	238			21600	60000	40 +a _k ×29,5	1750	1750
	232			21900	61000	45 +a _k ×30,5	1820	1820
	224			22200	62000	45 +a _k ×31	1890	1890
	218			22600	63500	45 +a _k ×31,5	1960	1960
	210			22900	64500	45 +a _k ×32	2030	2030
	204			23 200	65 500	$45 + a_k \times 32,5$	2110	2110
	196	200	200	23500	67000	45 +a _k ×33	2180	2180
	190	300	300	23800	68000	50 +a _k ×34	2260	2260
	182			24200	69000	50 +a _k ×34,5	2340	2340
	176			24500	70500	50 +a _k ×35	2420	2420
	168			24800	71500	$50 + a_k \times 35,5$	2500	2500
	162			25 000	72500	50 +a _k ×36	2580	2580
	154			25 500	74000	50 +a _k ×37	2660	2660
	148			25 500	75000	$50 + a_k \times 37,5$	2750	2750
	140			26000	76000	50 +a _k ×38	2840	2840
	134			26500	77500	50 +a _k ×38,5	2920	2920
	126			26500	78500	55 +a _k ×39	3010	3010
	120			27000	79500	55 +a _k ×40	3100	3100
	112			27500	81000	$55 + a_k \times 40,5$	3190	3190
	106			27500	82000	55 +a _k ×41	3 280	3280

WT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
WT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ge- wicht
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	≈g
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	228
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	275
2 2 2 2 2 2 2 2 2 2	275
2 2 2 2 2 2 2 2 2	275
2 2 2 2 2 2 2 2	275
2 2 2 2 2 2	275
2 2 2 2 2	275
2 2 2 2	275
2 2 2	275
2	275
2	275
	275
2	275
	275
	275 275

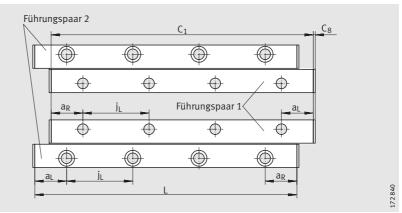
 $[\]overline{\text{Weitere Abmessungen siehe Seite 14.}}$

RWS 1808 – gleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)

RWS 1808 – ungleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set)


Einheit	Hub	Abmess	sungen	Tragzahle	n	Momente		
Kurzzeichen	h	C ₁	L	dyn. C	stat. C ₀	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	98			28000	83000	55 +a _k ×41,5	3380	3380
	92			28000	84500	60 +a _k ×42	3470	3470
	84			28500	85500	60 +a _k ×42,5	3570	3570
	78			29000	86500	60 +a _k ×43,5	3670	3670
	70			29000	88000	60 +a _k ×44	3770	3770
	64			29500	89000	60 +a _k ×44,5	3870	3870
	56	200	300	29500	90000	60 +a _k ×45	3970	3970
	50	300	300	30000	91500	60 +a _k ×45,5	4070	4070
	42			30500	92500	65 +a _k ×46,5	4180	4180
	36			30500	93500	65 +a _k ×47	4280	4280
	28			31000	95000	65 +a _k ×47,5	4390	4390
	22			31000	96000	65+a _k ×48	4500	4500
	14			31500	97500	65 +a _k ×48,5	4610	4610
	8			32000	98500	65 +a _k ×49	4720	4720
	332			21900	61000	45 + $a_k \times 30,5$	1820	1820
	324			22200	62000	45 +a _k ×31	1890	1890
	318			22600	63500	45 + $a_k \times 31,5$	1960	1960
	310			22900	64500	45 +a _k ×32	2030	2030
	304			23200	65500	45 + $a_k \times 32,5$	2110	2110
	296			23500	67000	45 +a _k ×33	2180	2180
	290			23800	68000	50 +a _k ×34	2260	2260
	282			24200	69000	50+a _k ×34,5	2340	2340
	276			24500	70500	50 +a _k ×35	2420	2420
	268	350	350	24800	71500	50 +a _k ×35,5	2500	2500
	262			25000	72500	50 +a _k ×36	2580	2580
	254			25500	74000	50 +a _k ×37	2660	2660
	248			25500	75000	50 + $a_k \times 37,5$	2750	2750
	240			26000	76000	50 +a _k ×38	2840	2840
	234			26500	77500	50 + $a_k \times 38,5$	2920	2920
	226			26500	78500	55 +a _k ×39	3010	3010
	220			27000	79500	55 +a _k ×40	3100	3100
	212			27500	81000	55 +a _k ×40,5	3190	3190
	206			27500	82000	55 +a _k ×41	3280	3 2 8 0

Führungsschiene						
Führungsschiene						
Kurzzeichen	Ge- wicht					
	≈g					
RWT	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	275					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					
	320					


Beispiel zur Auswahl der Sets siehe Seite 14.

320 320

¹⁾ Weitere Abmessungen siehe Seite 14.

Abstand der Käfige a_k – bestimmt durch die Anschlusskonstruktion

RWS 1808 – gleich langes Führungspaar 1 und 2 (Miniatur-Linearführungs-Set) $^{2)}$

Einheit	Hub	Abmessu	ıngen	Tragzahlen		Momente		
Kurzzeichen	h	C ₁	L ²⁾	dyn. C	stat. C ₀	$M_{0x} = k_M + a_i \times W_{M_{0x}}$	M _{Oy}	M _{Oz}
	mm	mm	mm	N	N	Nm	Nm	Nm
RWS 1808	198			28000	83 000	55 +a _k ×41,5	3380	3380
	192			28000	84500	60 +a _k ××42	3470	3470
	184			28500	85 500	$60 + a_k \times 42,5$	3570	3570
	178			29000	86500	$60 + a_k \times 43,5$	3670	3670
	170			29000	88 000	60 +a _k ×44	3770	3770
	164			29500	89000	60 +a _k ×44,5	3870	3870
	156			29500	90 000	60 +a _k ×45	3970	3970
	150			30000	91 500	60 +a _k ×45,5	4070	4070
	142			30500	92500	65 +a _k ×46,5	4180	4180
	136			30500	93500	65 +a _k ×47	4280	4280
	128			31000	95000	65 +a _k ×47,5	4390	4390
	122			31000	96000	65 +a _k ×48	4500	4500
	114			31500	97 500	65 +a _k ×48,5	4610	4610
	108			32000	98 500	65 +a _k ×49	4720	4720
	100	350	350	32000	99500	70 +a _k ×50	4830	4830
	94			32500	101000	70+a _k ×50,5	4950	4950
	86			32500	102000	70 +a _k ×51	5060	5060
	80			33000	103000	70 + $a_k \times 51,5$	5180	5180
	72			33500	104500	70 +a _k ×52	5300	5300
	66			33500	105500	70 +a _k ×53	5410	5410
	58			34000	106500	70 + $a_k \times 53,5$	5530	5530
	52			34000	108000	70 +a _k ×54	5660	5660
	44			34500	109000	75+a _k ×54,5	5780	5780
	38		1	34500	110000	75 +a _k ×55	5900	5900
	30			35000	111500	75 +a _k ×56	6030	6030
	24			35500	112500	75 + $a_k \times 56,5$	6160	6160
	16			35 500	113500	75 +a _k ×57	6290	6290
	10			36000	115000	75 + $a_k \times 57,5$	6410	6410
	2			36000	116000	80 +a _k ×58	6540	6540

Führungsschi	ene
Führungsschie	ne
Kurzzeichen	Ge- wicht
	≈g
RWT	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320
	320

320

320

1) Weitere Abmessungen siehe Seite 14.

²⁾ Ist L \neq C₁ siehe Berechnung Seite 14, Bild Seite 17.

INA-Schaeffler KG

Geschäftsbereich Lineartechnik 66406 Homburg (Saar) Internet www.ina.com

E-Mail info.linear@de.ina.com

In Deutschland:

Telefon 0180 5003872 Telefax 0180 5003873

Aus anderen Ländern:
Telefon +49 6841 701-0
Telefax +49 6841 701-625

Alle Angaben wurden sorgfältig erstellt und überprüft. Für eventuelle Fehler oder Unvollständigkeiten können wir jedoch keine Haftung übernehmen. Änderungen, die dem Fortschritt dienen, behalten wir uns vor.

 \odot by INA \cdot 2005, Oktober Nachdruck, auch auszugsweise, nur mit unserer Genehmigung.

MAI 79